[DL]MNIST handwritten digit processing by TensorFlow Version 2

2021-5-19 写技术

import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

import tensorflow as tf
sess = tf.InteractiveSession()



def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

def conv2d(x, w):
    return tf.nn.conv2d(x, w, strides=[1,1,1,1], padding='SAME')

def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')


x = tf.placeholder("float", [None, 784])
y_ = tf.placeholder("float", [None,10])

w_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32])

x_image = tf.reshape(x, [-1, 28,28, 1])

h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

w_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

w_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)

keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

w_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])

y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, w_fc2) + b_fc2)

cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.initialize_all_variables())


for i in range(20000):
    batch = mnist.train.next_batch(50)
    if i%100 == 0:
        train_accuracy = accuracy.eval(feed_dict = {
            x:batch[0], y_:batch[1], keep_prob: 1.0})
        print "step %d, training accuracy %g"%(i, train_accuracy)
    train_step.run(feed_dict = {x: batch[0], y_: batch[1], keep_prob:0.5})

print "test accuracy %g"%accuracy.eval(feed_dict = {
    x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0})

标签: DL

发表评论:

Powered by anycle 湘ICP备15001973号-1