[DL]MNIST handwritten digit processing by TensorFlow Version 2
import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) import tensorflow as tf sess = tf.InteractiveSession() def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, w): return tf.nn.conv2d(x, w, strides=[1,1,1,1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') x = tf.placeholder("float", [None, 784]) y_ = tf.placeholder("float", [None,10]) w_conv1 = weight_variable([5,5,1,32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1, 28,28, 1]) h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) w_conv2 = weight_variable([5,5,32,64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) w_fc1 = weight_variable([7*7*64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1) keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) w_fc2 = weight_variable([1024,10]) b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, w_fc2) + b_fc2) cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) sess.run(tf.initialize_all_variables()) for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict = { x:batch[0], y_:batch[1], keep_prob: 1.0}) print "step %d, training accuracy %g"%(i, train_accuracy) train_step.run(feed_dict = {x: batch[0], y_: batch[1], keep_prob:0.5}) print "test accuracy %g"%accuracy.eval(feed_dict = { x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0})
标签: DL
日历
最新微语
- 有的时候,会站在分叉路口,不知道向左还是右
2023-12-26 15:34
- 繁花乱开,鸟雀逐风。心自宁静,纷扰不闻。
2023-03-14 09:56
- 对于不可控的事,我们保持乐观,对于可控的事情,我们保持谨慎。
2023-02-09 11:03
- 小时候,
暑假意味着无忧无虑地玩很长一段时间,
节假意味着好吃好喝还有很多长期不见的小朋友来玩...
长大后,
这是女儿第一个暑假,
一个半月...
2022-07-11 08:54
- Watching the autumn leaves falling as you grow older together
2018-10-25 09:45
分类
最新评论
- Goonog
i get it now :) - 萧
@Fluzak:The web host... - Fluzak
Nice blog here! Also... - Albertarive
In my opinion you co... - ChesterHep
What does it plan? - ChesterHep
No, opposite. - mojoheadz
Everything is OK!... - Josephmaigh
I just want to say t... - ChesterHep
What good topic - AnthonyBub
Certainly, never it ...
发表评论: