[DL]SRGAN
import os import sys import torch import torch.nn as nn import torch.nn.functional as F from PIL import Image,ImageFilter import matplotlib.pyplot as plt import numpy as np import torchvision from torchvision import transforms from torchvision.transforms import ToTensor from torchvision.transforms import ToPILImage from torch.autograd import Variable import math import random from torchvision.models import * means = np.array([0.485, 0.456, 0.406]) stds = np.array([0.229, 0.224, 0.225]) channels = 3 pic_height = 128 pic_width = 128 upscale_factor = 2 hr_shape = (pic_height, pic_width) batchs = 1000 batch_size = 4 learning_rate = 0.0001 beats_l = 0.9 beats_r = 0.999 """ # errors def psnr(img1, img2): img1 = Variable(img1) img2 = Variable(img2) mse = ( (img1/1.0) - (img2/1.0) ) ** 2 mse = np.mean( np.array(mse) ) if mse < 1.0e-10: return 100 return 10 * math.log10(255.0**2/mse) """ def psnr(img1, img2): img1 = Variable(img1) img2 = Variable(img2) mse = ( (img1/255.0) - (img2/255.0) ) ** 2 mse = np.mean( np.array(mse) ) if mse < 1.0e-10: return 100 return 10 * math.log10(1/math.sqrt(mse)) def rgb2ycbcr(rgb_image): """convert rgb into ycbcr""" if len(rgb_image.shape)!=3 or rgb_image.shape[2]!=3: return rgb_image #raise ValueError("input image is not a rgb image") rgb_image = rgb_image.astype(np.float32) transform_matrix = np.array([[0.257, 0.564, 0.098], [-0.148, -0.291, 0.439], [0.439, -0.368, -0.071]]) shift_matrix = np.array([16, 128, 128]) ycbcr_image = np.zeros(shape=rgb_image.shape) w, h, _ = rgb_image.shape for i in range(w): for j in range(h): ycbcr_image[i, j, :] = np.dot(transform_matrix, rgb_image[i, j, :]) + shift_matrix return ycbcr_image def ycbcr2rgb(ycbcr_image): """convert ycbcr into rgb""" if len(ycbcr_image.shape)!=3 or ycbcr_image.shape[2]!=3: return ycbcr_image #raise ValueError("input image is not a rgb image") ycbcr_image = ycbcr_image.astype(np.float32) transform_matrix = np.array([[0.257, 0.564, 0.098], [-0.148, -0.291, 0.439], [0.439, -0.368, -0.071]]) transform_matrix_inv = np.linalg.inv(transform_matrix) shift_matrix = np.array([16, 128, 128]) rgb_image = np.zeros(shape=ycbcr_image.shape) w, h, _ = ycbcr_image.shape for i in range(w): for j in range(h): rgb_image[i, j, :] = np.dot(transform_matrix_inv, ycbcr_image[i, j, :]) - np.dot(transform_matrix_inv, shift_matrix) return rgb_image.astype(np.uint8) def verse_normalize(img, means, stds): means = torch.Tensor(means) stds = torch.Tensor(stds) for i in range(3): img[:,i] = img[:,i] * stds[i] + means[i] return img class dataloader: def __init__(self, path, batchs, batch_size, test= False, test_offset = 0.9, order = False): self.test = test self.test_offset = test_offset self.batchs_cnt = 0 self.batchs = batchs self.batch_size = batch_size self.path = path self.file_list = os.listdir(self.path) if order: self.file_list = sorted(self.file_list) else: random.shuffle(self.file_list) self.file_number = len(self.file_list) self.file_start = 0 self.file_stop = self.file_number * self.test_offset - 1 if self.test: self.file_start = self.file_number * self.test_offset self.file_stop = self.file_number - 1 self.file_start = int(np.floor(self.file_start)) self.file_stop = int(np.floor(self.file_stop)) self.file_idx = self.file_start self.downsample = transforms.Compose([ transforms.Resize( (pic_height // upscale_factor, pic_width // upscale_factor), Image.BICUBIC), #transforms.CenterCrop( pic_height), #transforms.Scale( pic_height // 2, interpolation=Image.BICUBIC), #transforms.Resize( (int(pic_height/2),int(pic_width/2)), Image.BILINEAR), #transforms.RandomResizedCrop( int(pic_height/2), scale=(1,1) ), #transforms.RandomResizedCrop( pic_height, scale=(0.08,1) ), #transforms.Grayscale(num_output_channels = 3), transforms.ToTensor(), transforms.Normalize(means, stds) ]) self.transform = transforms.Compose([ #transforms.CenterCrop( pic_height), transforms.Resize( (pic_height,pic_width), Image.BILINEAR), #transforms.RandomResizedCrop( pic_height, scale=(1,1) ), #transforms.Grayscale(num_output_channels = 3), transforms.ToTensor(), transforms.Normalize(means, stds) ]) def get_len(self): return self.file_stop - self.file_start def __iter__(self): return self def __next__(self): if (self.batchs_cnt >= self.batchs) & (self.batchs > 0): self.batchs_cnt = 0 raise StopIteration self.batchs_cnt += 1 X = [] Y = [] for i in range( self.batch_size): X_, Y_ = self._next() X.append(X_) Y.append(Y_) X = torch.stack(X, 0) Y = torch.stack(Y, 0) return X, Y def _next(self): if self.file_idx >= self.file_stop: self.file_idx = self.file_start file_path = self.path + '/' + self.file_list[self.file_idx] self.file_idx += 1 Y = Image.open(file_path) #print( "Y:", file_path, " (", Y.size ) if len(Y.getbands()) == 1: Y = Y.convert("RGB") Y_ = self.transform(Y) X_ = self.downsample(Y) del Y return X_,Y_ class ResidualBlock(nn.Module): def __init__(self, in_features): super(ResidualBlock, self).__init__() # in_features: 64 self.conv_block = nn.Sequential( nn.Conv2d(in_features, in_features, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(in_features, 0.8), nn.PReLU(), nn.Conv2d(in_features, in_features, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(in_features, 0.8), ) def forward(self, x): return x + self.conv_block(x) class GeneratorResNet(nn.Module): def __init__(self, in_channels=3, out_channels=3, n_residual_blocks=16): super(GeneratorResNet, self).__init__() self.conv1 = nn.Sequential(nn.Conv2d(in_channels, 64, kernel_size=9, stride=1, padding=4), nn.PReLU()) res_blocks = [] for _ in range(n_residual_blocks): res_blocks.append(ResidualBlock(64)) self.res_blocks = nn.Sequential(*res_blocks) self.conv2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(64, 0.8)) upsampling = [] for out_features in range(1): #2 upsampling += [ # nn.Upsample(scale_factor=2), nn.Conv2d(64, 256, 3, 1, 1), nn.BatchNorm2d(256), nn.PixelShuffle(upscale_factor=2), nn.PReLU(), ] self.upsampling = nn.Sequential(*upsampling) self.conv3 = nn.Sequential(nn.Conv2d(64, out_channels, kernel_size=9, stride=1, padding=4), nn.Tanh()) def forward(self, x): out1 = self.conv1(x) out2 = self.res_blocks(out1) out3 = self.conv2(out2) out4 = torch.add(out1, out3) out5 = self.upsampling(out4) out = self.conv3(out5) return out class Discriminator(nn.Module): def __init__(self, input_shape): # input_shape: (3, 128, 128) super(Discriminator, self).__init__() self.input_shape = input_shape in_channels, in_height, in_width = self.input_shape patch_h, patch_w = int(in_height / 2 ** 4), int(in_width / 2 ** 4) self.output_shape = (1, patch_h, patch_w) # patch_h: 8 patch_w: 8 def discriminator_block(in_filters, out_filters, first_block=False): layers = [] layers.append(nn.Conv2d(in_filters, out_filters, kernel_size=3, stride=1, padding=1)) if not first_block: layers.append(nn.BatchNorm2d(out_filters)) layers.append(nn.LeakyReLU(0.2, inplace=True)) layers.append(nn.Conv2d(out_filters, out_filters, kernel_size=3, stride=2, padding=1)) layers.append(nn.BatchNorm2d(out_filters)) layers.append(nn.LeakyReLU(0.2, inplace=True)) return layers layers = [] in_filters = in_channels for i, out_filters in enumerate([64, 128, 256, 512]): layers.extend(discriminator_block(in_filters, out_filters, first_block=(i == 0))) in_filters = out_filters layers.append(nn.Conv2d(out_filters, 1, kernel_size=3, stride=1, padding=1)) self.model = nn.Sequential(*layers) def forward(self, img): return self.model(img) class FeatureExtractor(nn.Module): def __init__(self): super(FeatureExtractor, self).__init__() vgg19_model = vgg19(pretrained=True) # the first 18 layers of vgg16 self.feature_extractor = nn.Sequential(*list(vgg19_model.features.children())[:18]) def forward(self, img): return self.feature_extractor(img) generator = GeneratorResNet() discriminator = Discriminator(input_shape=(channels, *hr_shape)) feature_extractor = FeatureExtractor() print(generator) print(discriminator) feature_extractor.eval() criterion_GAN = torch.nn.MSELoss() criterion_content = torch.nn.L1Loss() optimizer_G = torch.optim.Adam(generator.parameters(), lr=learning_rate, betas=(beats_l, beats_r)) optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=learning_rate, betas=(beats_l, beats_r)) tensor_to_pil = ToPILImage() ''' dataloader = dataloader('./dataset/Set14/image_SRF_2') plt.figure("ddd") plt.ion() plt.cla() for X,Y in dataloader: plt.imshow(X) plt.pause(0.1) plt.ioff() iii = tensor_to_pil(Y_[0]) plt.imshow(iii) plt.show() ''' dataloader_train = dataloader('/home/nicholas/Documents/dataset/imageNet', batchs, batch_size) #dataloader_train = dataloader('./dataset/Set14/image_SRF_3', 10, 4) #dataloader_test = dataloader('/home/nicholas/Documents/dataset/imageNet', 1, 2) #dataloader_test = dataloader('./dataset/Set14/image_SRF_3', 1, 4) dataloader_test = dataloader('./images', 0, 3) new_training = 0 Tensor = torch.Tensor def train(): try: generator.load_state_dict(torch.load("./model/generator.m")) discriminator.load_state_dict(torch.load("./model/discriminator.m")) except: print(" ************** Model config files not accessable !!! ************") running_loss = 0 plt.ion() i = 0 for X,Y in dataloader_train: ''' Train ''' valid = Variable( Tensor(np.ones( (X.size(0), *discriminator.output_shape) ) ), requires_grad=False) fake = Variable( Tensor(np.zeros( (X.size(0), *discriminator.output_shape) ) ), requires_grad=False) optimizer_G.zero_grad() gen_Y = generator( X ) loss_GAN = criterion_GAN( discriminator( gen_Y ), valid) features_gen_Y = feature_extractor( gen_Y ) features_Y = feature_extractor( Y ) loss_content = criterion_content( features_gen_Y, features_Y.detach()) loss_G = loss_content + 1e-3 * loss_GAN loss_G.backward() optimizer_G.step() optimizer_D.zero_grad() loss_valid = criterion_GAN( discriminator( Y ), valid) loss_fake = criterion_GAN( discriminator( gen_Y.detach() ), fake) loss_D = ( loss_valid + loss_fake ) / 2 loss_D.backward() optimizer_D.step() print( "Epoch %d/%d: D loss: %f, G loss: %f" % ( i, batchs, loss_D.item(), loss_G.item() ) + '\n') #display_img( gen_Y[0], Y[0], X[0]) i += 1 if i%5 == 0: test() torch.save(generator.state_dict(), "./model/generator.m") torch.save(discriminator.state_dict(), "./model/discriminator.m") plt.ioff() def display_img(img1, img2, img3 = None): n = 3 if img3 is None: n = 2 plt.subplot(1, n, 1) plt.imshow(img1) plt.subplot(1, n, 2) plt.imshow(img2) if img3 is not None: plt.subplot(1, n, 3) plt.imshow(img3) plt.show() def test(): running_loss = 0 #for X,Y in dataloader_test: for i in range(1): X,Y = next(dataloader_test) print(X.shape) _,lc,lh,lw = X.shape _,hc,hh,hw = Y.shape Y_ = generator( X ) print(" Psnr = ", psnr(Y_,Y) ) Y_ = verse_normalize(Y_, means, stds) Y = verse_normalize(Y, means, stds) X = verse_normalize(X, means, stds) ''' Display images ''' display_img( tensor_to_pil(Y_[0]), tensor_to_pil(Y[0]), tensor_to_pil(X[0]) ) plt.pause(0.1) def run(): generator.load_state_dict(torch.load("./model/generator.m")) discriminator.load_state_dict(torch.load("./model/discriminator.m")) generator.eval() discriminator.eval() path = "./dataset/Set5/image_SRF_2" file_list = os.listdir(path) #plt.ion() for img_name in file_list: img = Image.open(path+'/'+img_name) if len(img.getbands()) == 1: img = img.convert("RGB") c = 3 # turn ( h X w ) to ( uh X uw ) w, h = img.size uh = h * upscale_factor uw = w * upscale_factor # block size lh = pic_height // upscale_factor lw = pic_width // upscale_factor # blocks number rows = math.ceil( h / lh ) cols = math.ceil( w / lw ) # tmp img size h_mid = rows * lh w_mid = cols * lw uh_mid = h_mid * upscale_factor uw_mid = w_mid * upscale_factor transform_mid = transforms.Compose([ transforms.CenterCrop( (h_mid, w_mid) ), transforms.ToTensor(), transforms.Normalize(means, stds) ]) transform_last = transforms.Compose([ transforms.CenterCrop( (uh, uw) ), transforms.ToTensor() ]) Y = torch.zeros( (1, 3, uh_mid, uw_mid) ) img_ = transform_mid(img) row = 0 col = 0 for row in range(rows): for col in range(cols): X_ = img_[:, row * lh : (row + 1) * lh, col * lw : (col + 1) * lw].detach() X_ = X_.reshape(-1, c, lh, lw) Y_ = generator(X_) Y[0, :, row * pic_height: (row+1) * pic_height, col * pic_width: (col+1) * pic_width] = Y_ Y = verse_normalize(Y, means, stds) Y = Y[0] Y = tensor_to_pil(Y) Y = transform_last(Y) Y = tensor_to_pil(Y) Y.save("./SRGAN.png") display_img( Y, img) plt.pause(1) plt.clf() #plt.ioff() """ For training run this command: python face_cnn.py train For testing fun this command: python face_cnn.py test """ if __name__ == '__main__': args = sys.argv[1:] print( args, len(args)) if (len(args) == 1) & (args[0] == "train"): train() elif (len(args) == 1) & (args[0] == "run"): run() else: test()
标签: python machine_learning DL
日历
最新微语
- 有的时候,会站在分叉路口,不知道向左还是右
2023-12-26 15:34
- 繁花乱开,鸟雀逐风。心自宁静,纷扰不闻。
2023-03-14 09:56
- 对于不可控的事,我们保持乐观,对于可控的事情,我们保持谨慎。
2023-02-09 11:03
- 小时候,
暑假意味着无忧无虑地玩很长一段时间,
节假意味着好吃好喝还有很多长期不见的小朋友来玩...
长大后,
这是女儿第一个暑假,
一个半月...
2022-07-11 08:54
- Watching the autumn leaves falling as you grow older together
2018-10-25 09:45
分类
最新评论
- Goonog
i get it now :) - 萧
@Fluzak:The web host... - Fluzak
Nice blog here! Also... - Albertarive
In my opinion you co... - ChesterHep
What does it plan? - ChesterHep
No, opposite. - mojoheadz
Everything is OK!... - Josephmaigh
I just want to say t... - ChesterHep
What good topic - AnthonyBub
Certainly, never it ...
发表评论: